Comparisons of Approximate Confidence Interval Procedures for Type I Censored Data

نویسندگان

  • Shuen-Lin Jeng
  • William Q. Meeker
چکیده

This article compares different procedures to compute confidence intervals for parameters and quantiles of the Weibull, lognormal, and similar log-location-scale distributions from Type I censored data that typically arise from life-test experiments. The procedures can be classified into three groups. The first group contains procedures based on the commonly used normal approximation for the distribution of studentized (possibly after a transformation) maximum likelihood estimators. The second group contains procedures based on the likelihood ratio statistic and its modifications. The procedures in the third group use a parametric bootstrap approach, including the use of bootstrap-type simulation, to calibrate the procedures in the first two groups. The procedures in all three groups are justified on the basis of large-sample asymptotic theory. We use Monte Carlo simulation to investigate the finite-sample properties of these procedures. Details are reported for the Weibull distribution. Our results show, as predicted by asymptotic theory, that the coverage probabilities of one-sided confidence bounds calculated from procedures in the first and second groups are further away from nominal than those of two-sided confidence intervals. The commonly used normal-approximation procedures are crude unless the expected number of failures is large (more than 50 or 100). The likelihood ratio procedures work much better and provide adequate procedures down to 30 or 20 failures. By using bootstrap procedures with caution, the coverage probability is close to nominal when the expected number of failures is as small as 15 to 10 or less, depending on the particular situation. Exceptional cases, caused by discreteness from Type I censoring, are noted.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayes Interval Estimation on the Parameters of the Weibull Distribution for Complete and Censored Tests

A method for constructing confidence intervals on parameters of a continuous probability distribution is developed in this paper. The objective is to present a model for an uncertainty represented by parameters of a probability density function.  As an application, confidence intervals for the two parameters of the Weibull distribution along with their joint confidence interval are derived. The...

متن کامل

Exact hypothesis testing and confidence interval for mean of the exponential distribution under Type-I progressive hybrid censoring

 ‎Censored samples are discussed in experiments of life-testing; i.e‎. ‎whenever the experimenter does not observe the failure times of all units placed on a life test‎. ‎In recent years‎, ‎inference based on censored sampling is considered‎, ‎so that about the parameters of various distributions such as ‎normal‎, ‎exponential‎, ‎gamma‎, ‎Rayleigh‎, ‎Weibull‎, ‎log normal‎, ‎inverse Gaussian‎, ...

متن کامل

Non-Bayesian Estimation and Prediction under Weibull Interval Censored Data

In this paper, a one-sample point predictor of the random variable X is studied. X is the occurrence of an event in any successive visits $L_i$ and $R_i$ :i=1,2…,n (interval censoring). Our proposed method is based on finding the expected value of the conditional distribution of X given $L_i$ and $R_i$ (i=1,2…,n). To make the desired prediction, our approach is on the basis of approximating the...

متن کامل

Analysis of Hybrid Censored Data from the Lognormal Distribution

The mixture of Type I and Type II censoring schemes, called the hybrid censoring. This article presents the statistical inferences on lognormal parameters when the data are hybrid censored. We obtain the maximum likelihood estimators (MLEs) and the approximate maximum likelihood estimators (AMLEs) of the unknown parameters. Asymptotic distributions of the maximum likelihood estimators are used ...

متن کامل

Interval Estimation for the Exponential Distribution under Progressive Type-II Censored Step-Stress Accelerated Life-Testing Model Based on Fisher Information

This paper, determines the confidence interval using the Fisher information under progressive type-II censoring for the k-step exponential step-stress accelerated life testing. We study the performance of these confidence intervals. Finally an example is given to illustrate the proposed procedures.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Technometrics

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2000